Abstract
A case study of catalytic carbon-carbon σ-bond homolysis is presented. The coordination of a redox-active Lewis acid catalyst reduces the bond-dissociation free energies of adjacent carbon-carbon σ-bonds, and this complexation-induced bond-weakening is used to effect reversible carbon-carbon bond homolysis. Stereochemical isomerization of 1,2-disubstituted cyclopropanes was investigated as a model reaction with a ruthenium (III/II) redox couple adopted for bond weakening. Results from our mechanistic investigation into the stereospecificity of the isomerization reaction are consistent with selective complexation-induced carbon-carbon bond homolysis. The ΔG‡ of catalyzed and uncatalyzed reactions were estimated to be 14.4 and 40.0 kcal/mol, respectively with the computational method, (U)PBE0-D3/def2-TZVPP-SMD(toluene)//(U)B3LYP-D3/def2-SVP. We report this work as the first catalytic example where the complexation-induced bond-weakening effect is quantified through transition state analysis.
Original language | English (US) |
---|---|
Pages (from-to) | 15488-15496 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 144 |
Issue number | 34 |
DOIs | |
State | Published - Aug 31 2022 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Biochemistry
- Catalysis
- Colloid and Surface Chemistry