REVERBERATION MAPPING of the BROAD LINE REGION: APPLICATION to A HYDRODYNAMICAL LINE-DRIVEN DISK WIND SOLUTION

Tim Waters, Amit Kashi, Daniel Proga, Michael Eracleous, Aaron J. Barth, Jenny Greene

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, wecarry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i ≲ 45°). This effect may be observable in low ionization lines such as Hβ.

Original languageEnglish (US)
Article number53
JournalAstrophysical Journal
Volume827
Issue number1
DOIs
StatePublished - Aug 10 2016

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • galaxies: active
  • galaxies: nuclei
  • hydrodynamics
  • line: profiles
  • quasars: emission lines

Fingerprint

Dive into the research topics of 'REVERBERATION MAPPING of the BROAD LINE REGION: APPLICATION to A HYDRODYNAMICAL LINE-DRIVEN DISK WIND SOLUTION'. Together they form a unique fingerprint.

Cite this