Abstract
Harvesting behaviors of natural resource users, such as farmers, fishermen and aquaculturists, are shaped by season-to-season and day-to-day variability, or in other words risk. Here, we explore how risk-mitigation strategies can lead to sustainable use and improved management of common-pool natural resources. Over-exploitation of unmanaged natural resources, which lowers their long-term productivity, is a central challenge facing societies. While effective top-down management is a possible solution, it is not available if the resource is outside the jurisdictional bounds of any management entity, or if existing institutions cannot effectively impose sustainable-use rules. Under these conditions, alternative approaches to natural resource governance are required. Here, we study revenue-sharing clubs as a mechanism by which resource users can mitigate their income volatility and importantly, as a co-benefit, are also incentivized to reduce their effort, leading to reduced over-exploitation and improved resource governance. We use game theoretic analyses and agent-based modeling to determine the conditions in which revenue-sharing can be beneficial for resource management as well as resource users. We find that revenue-sharing agreements can emerge and lead to improvements in resource management when there is large variability in production/revenue and when this variability is uncorrelated across members of the revenue-sharing club. Further, we show that if members of the revenue-sharing collective can sell their product at a price premium, then the range of ecological and economic conditions under which revenue-sharing can be a tool for management greatly expands. These results have implications for the design of bottom-up management, where resource users themselves are incentivized to operate in ecologically sustainable and economically advantageous ways.
Original language | English (US) |
---|---|
Pages (from-to) | 205-214 |
Number of pages | 10 |
Journal | Journal of Theoretical Biology |
Volume | 454 |
DOIs | |
State | Published - Oct 7 2018 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modeling and Simulation
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics
Keywords
- Agent-based model
- Common-pool resource
- Complex adaptive systems
- Cooperation
- Fisheries management
- Human behavior
- Insurance
- Risk
- Social-ecological systems
- Sustainability