Revealing evolutionary constraints on proteins through sequence analysis

Shou Wen Wang, Anne Florence Bitbol, Ned S. Wingreen

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Statistical analysis of alignments of large numbers of protein sequences has revealed "sectors" of collectively coevolving amino acids in several protein families. Here, we show that selection acting on any functional property of a protein, represented by an additive trait, can give rise to such a sector. As an illustration of a selected trait, we consider the elastic energy of an important conformational change within an elastic network model, and we show that selection acting on this energy leads to correlations among residues. For this concrete example and more generally, we demonstrate that the main signature of functional sectors lies in the small-eigenvalue modes of the covariance matrix of the selected sequences. However, secondary signatures of these functional sectors also exist in the extensively-studied largeeigenvalue modes. Our simple, general model leads us to propose a principled method to identify functional sectors, along with the magnitudes of mutational effects, from sequence data. We further demonstrate the robustness of these functional sectors to various forms of selection, and the robustness of our approach to the identification of multiple selected traits.

Original languageEnglish (US)
Article numbere1007010
JournalPLoS computational biology
Volume15
Issue number4
DOIs
StatePublished - 2019

All Science Journal Classification (ASJC) codes

  • Genetics
  • Ecology, Evolution, Behavior and Systematics
  • Cellular and Molecular Neuroscience
  • Molecular Biology
  • Ecology
  • Computational Theory and Mathematics
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Revealing evolutionary constraints on proteins through sequence analysis'. Together they form a unique fingerprint.

Cite this