Abstract
The burgeoning field of genomics has revived interest in multiple testing procedures by raising new methodological and computational challenges. For example, microarray experiments generate large multiplicity problems in which thousands of hypotheses are tested simultaneously. Westfall and Young (1993) propose resampling-based p-value adjustment procedures which are highly relevant to microarray experiments. This article discusses different criteria for error control in resampling-based multiple testing, including (a) the family wise error rate of Westfall and Young (1993) and (b) the false discovery rate developed by Benjamini and Hochberg (1995), both from a frequentist viewpoint; and (c) the positive false discovery rate of Storey (2002a), which has a Bayesian motivation. We also introduce our recently developed fast algorithm for implementing the minP adjustment to control family-wise error rate. Adjusted p-values for different approaches are applied to gene expression data from two recently published microarray studies. The properties of these procedures for multiple testing are compared.
Original language | English (US) |
---|---|
Pages (from-to) | 1-77 |
Number of pages | 77 |
Journal | Test |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - Jun 2003 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Statistics, Probability and Uncertainty
Keywords
- Adjusted p-value
- False discovery rate
- Family-wise error rate
- Fast algorithm
- Microarray
- MinP
- Multiple testing