Representational efficiency outweighs action efficiency in human program induction

Sophia Sanborn, David D. Bourgin, Michael Chang, Thomas L. Griffiths

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The importance of hierarchically structured representations for tractable planning has long been acknowledged. However, the questions of how people discover such abstractions and how to define a set of optimal abstractions remain open. This problem has been explored in cognitive science in the problem solving literature and in computer science in hierarchical reinforcement learning. Here, we emphasize an algorithmic perspective on learning hierarchical representations in which the objective is to efficiently encode the structure of the problem, or, equivalently, to learn an algorithm with minimal length. We introduce a novel problem-solving paradigm that links problem solving and program induction under the Markov Decision Process (MDP) framework. Using this task, we target the question of whether humans discover hierarchical solutions by maximizing efficiency in number of actions they generate or by minimizing the complexity of the resulting representation and find evidence for the primacy of representational efficiency.

Original languageEnglish (US)
Title of host publicationProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018
PublisherThe Cognitive Science Society
Pages2400-2405
Number of pages6
ISBN (Electronic)9780991196784
StatePublished - 2018
Externally publishedYes
Event40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018 - Madison, United States
Duration: Jul 25 2018Jul 28 2018

Publication series

NameProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018

Conference

Conference40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018
Country/TerritoryUnited States
CityMadison
Period7/25/187/28/18

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Keywords

  • hierarchical reinforcement learning
  • problem solving
  • program induction

Fingerprint

Dive into the research topics of 'Representational efficiency outweighs action efficiency in human program induction'. Together they form a unique fingerprint.

Cite this