Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification

Benjamin Eysenbach, Sergey Levine, Ruslan Salakhutdinov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Scopus citations

Abstract

Reinforcement learning (RL) algorithms assume that users specify tasks by manually writing down a reward function. However, this process can be laborious and demands considerable technical expertise. Can we devise RL algorithms that instead enable users to specify tasks simply by providing examples of successful outcomes? In this paper, we derive a control algorithm that maximizes the future probability of these successful outcome examples. Prior work has approached similar problems with a two-stage process, first learning a reward function and then optimizing this reward function using another RL algorithm. In contrast, our method directly learns a value function from transitions and successful outcomes, without learning this intermediate reward function. Our method therefore requires fewer hyperparameters to tune and lines of code to debug. We show that our method satisfies a new data-driven Bellman equation, where examples take the place of the typical reward function term. Experiments show that our approach outperforms prior methods that learn explicit reward functions.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages11541-11552
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 2021
Externally publishedYes
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume14
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification'. Together they form a unique fingerprint.

Cite this