Abstract
We study the savings afforded by repeated use in two zero-error communication problems. We show that for some random sources, communicating one instance requires arbitrarily many bits, but communicating multiple instances requires roughly 1 bit per instance. We also exhibit sources where the number of bits required for a single instance is comparable to the source's size, but two instances require only a logarithmic number of additional bits. We relate this problem to that of communicating information over a channel. Known results imply that some channels can communicate exponentially more bits in two uses than they can in one use.
Original language | English (US) |
---|---|
Pages (from-to) | 1276-1289 |
Number of pages | 14 |
Journal | IEEE Transactions on Information Theory |
Volume | 41 |
Issue number | 5 |
DOIs | |
State | Published - Sep 1995 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Information Systems
- Computer Science Applications
- Library and Information Sciences