## Abstract

We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius ɛ > 0. Denoting the regularization parameter by δ, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive L^{∞} bounds for the difference between regularized SBT and its classical counterpart in terms of δ, ɛ, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to log(δ/ɛ); in particular, δ = ɛ is necessary to avoid an O(1) discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to log(1 + δ^{2} /ɛ^{2}), and any choice of δ ∝ ɛ will result in an O(1) discrepancy as ɛ → 0. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed slender body PDE which classical SBT is known to approximate. Numerics verify this O(1) discrepancy but also indicate that the difference may have little impact in practice.

Original language | English (US) |
---|---|

Article number | 283 |

Journal | Fluids |

Volume | 6 |

Issue number | 8 |

DOIs | |

State | Published - Aug 2021 |

## All Science Journal Classification (ASJC) codes

- Condensed Matter Physics
- Mechanical Engineering
- Fluid Flow and Transfer Processes

## Keywords

- Error analysis
- Regularized Stokeslets
- Slender body theory