Reliability and Latency of Wireless Communication Systems with a Secret-Key Budget

Karl Ludwig Besser, Rafael F. Schaefer, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider a wireless communication system with a passive eavesdropper, in which a transmitter and legitimate receiver generate and use key bits to secure the transmission of their data. These bits are added to and used from a pool of available key bits. In this work, we analyze the reliability of the system in terms of the probability that the budget of available key bits will be exhausted. In addition, we investigate the latency before a transmission can take place. Since security, reliability, and latency are three important metrics for modern communication systems, it is of great interest to jointly analyze them in relation to the system parameters. The results presented in this work will allow system designers to adjust the system parameters in such a way that the requirements of the application in terms of both reliability and latency are met.

Original languageEnglish (US)
Title of host publicationICC 2024 - IEEE International Conference on Communications
EditorsMatthew Valenti, David Reed, Melissa Torres
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4012-4017
Number of pages6
ISBN (Electronic)9781728190549
DOIs
StatePublished - 2024
Externally publishedYes
Event59th Annual IEEE International Conference on Communications, ICC 2024 - Denver, United States
Duration: Jun 9 2024Jun 13 2024

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607

Conference

Conference59th Annual IEEE International Conference on Communications, ICC 2024
Country/TerritoryUnited States
CityDenver
Period6/9/246/13/24

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Reliability and Latency of Wireless Communication Systems with a Secret-Key Budget'. Together they form a unique fingerprint.

Cite this