Regularized mixed dimensionality and density learning in computer vision

Gloria Haro, Gregory Randall, Guillermo Sapiro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

A framework for the regularized estimation of non-uniform dimensionality and density in high dimensional data is introduced in this work. This leads to learning stratifications, that is, mixture of manifolds representing different characteristics and complexities in the data set. The basic idea relies on modeling the high dimensional sample points as a process of Poisson mixtures, with regularizing restrictions and spatial continuity constraints. Theoretical asymptotic results for the model are presented as well, The presentation of the framework is complemented with artificial and real examples showing the importance of regularized stratification learning in computer vision applications.

Original languageEnglish (US)
Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
DOIs
StatePublished - 2007
Externally publishedYes
Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
Duration: Jun 17 2007Jun 22 2007

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
Country/TerritoryUnited States
CityMinneapolis, MN
Period6/17/076/22/07

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Regularized mixed dimensionality and density learning in computer vision'. Together they form a unique fingerprint.

Cite this