Abstract
Let X N be a non-degenerate normal projective variety of codimension e and degree d with isolated-Gorenstein singularities. We prove that the Castelnuovo-Mumford regularity reg(X) ≤ d - e, as predicted by the Eisenbud-Goto regularity conjecture. Such a bound fails for general projective varieties by a recent result of McCullough-Peeva. The main techniques are Noma's classification of non-degenerate projective varieties and Nadel vanishing for multiplier ideals. We also classify the extremal and the next to extremal cases.
Original language | English (US) |
---|---|
Article number | 2050039 |
Journal | Communications in Contemporary Mathematics |
Volume | 23 |
Issue number | 5 |
DOIs | |
State | Published - Aug 2021 |
All Science Journal Classification (ASJC) codes
- General Mathematics
- Applied Mathematics
Keywords
- Castelnuovo-Mumford regularity
- Eisenbud-Goto regularity conjecture
- double point divisor
- isolated singularity
- multiplier ideal