TY - GEN
T1 - Reflexion
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
AU - Shinn, Noah
AU - Cassano, Federico
AU - Gopinath, Ashwin
AU - Narasimhan, Karthik
AU - Yao, Shunyu
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Large language models (LLMs) have been increasingly used to interact with external environments (e.g., games, compilers, APIs) as goal-driven agents. However, it remains challenging for these language agents to quickly and efficiently learn from trial-and-error as traditional reinforcement learning methods require extensive training samples and expensive model fine-tuning. We propose Reflexion, a novel framework to reinforce language agents not by updating weights, but instead through linguistic feedback. Concretely, Reflexion agents verbally reflect on task feedback signals, then maintain their own reflective text in an episodic memory buffer to induce better decision-making in subsequent trials. Reflexion is flexible enough to incorporate various types (scalar values or free-form language) and sources (external or internally simulated) of feedback signals, and obtains significant improvements over a baseline agent across diverse tasks (sequential decision-making, coding, language reasoning). For example, Reflexion achieves a 91% pass@1 accuracy on the HumanEval coding benchmark, surpassing the previous state-of-the-art GPT-4 that achieves 80%. We also conduct ablation and analysis studies using different feedback signals, feedback incorporation methods, and agent types, and provide insights into how they affect performance. We release all code, demos, and datasets at https://github.com/noahshinn024/reflexion.
AB - Large language models (LLMs) have been increasingly used to interact with external environments (e.g., games, compilers, APIs) as goal-driven agents. However, it remains challenging for these language agents to quickly and efficiently learn from trial-and-error as traditional reinforcement learning methods require extensive training samples and expensive model fine-tuning. We propose Reflexion, a novel framework to reinforce language agents not by updating weights, but instead through linguistic feedback. Concretely, Reflexion agents verbally reflect on task feedback signals, then maintain their own reflective text in an episodic memory buffer to induce better decision-making in subsequent trials. Reflexion is flexible enough to incorporate various types (scalar values or free-form language) and sources (external or internally simulated) of feedback signals, and obtains significant improvements over a baseline agent across diverse tasks (sequential decision-making, coding, language reasoning). For example, Reflexion achieves a 91% pass@1 accuracy on the HumanEval coding benchmark, surpassing the previous state-of-the-art GPT-4 that achieves 80%. We also conduct ablation and analysis studies using different feedback signals, feedback incorporation methods, and agent types, and provide insights into how they affect performance. We release all code, demos, and datasets at https://github.com/noahshinn024/reflexion.
UR - http://www.scopus.com/inward/record.url?scp=85185875693&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85185875693&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85185875693
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
A2 - Oh, A.
A2 - Neumann, T.
A2 - Globerson, A.
A2 - Saenko, K.
A2 - Hardt, M.
A2 - Levine, S.
PB - Neural information processing systems foundation
Y2 - 10 December 2023 through 16 December 2023
ER -