Abstract
We consider the challenging problem of Chavel′s conjecture on the domain monotonicity of the fundamental solution of the Neumann problem. It says that if D ⊂ D̃ are open convex domains and if pt(x, y) and p̃t(x, y) denote the corresponding parabolic heat kernels for the respective Neumann problems, then: pt(x, y) ≥ p ̃t(x, y) ∀x, y ∈ D, ∀t > 0. The quantities pt(x, y) and p̃t(x, y) can be interpreted as the transition densities of the reflecting Brownian motions Xt and X̃t in D and D̃, respectively. The conjecture can be restated as a comparison problem for Brownian motions with reflecting boundary conditions. We give a detailed analysis of the small time asymptotics of the Brownian paths reflected on the boundary of a polyhedron and we give a probabilistic proof of Chavel′s conjecture for small time t uniformly for all x and y in D when the closure of D is contained in D̃. An interesting by-product of our proof is that it does not require the large domain to be convex.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 109-128 |
| Number of pages | 20 |
| Journal | Journal of Functional Analysis |
| Volume | 123 |
| Issue number | 1 |
| DOIs | |
| State | Published - Jul 1994 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Analysis