Reducing reparameterization gradient variance

Andrew C. Miller, Nicholas J. Foti, Alexander D'Amour, Ryan P. Adams

Research output: Contribution to journalConference articlepeer-review

50 Scopus citations

Abstract

Optimization with noisy gradients has become ubiquitous in statistics and machine learning. Reparameterization gradients, or gradient estimates computed via the "reparameterization trick," represent a class of noisy gradients often used in Monte Carlo variational inference (MCVI). However, when these gradient estimators are too noisy, the optimization procedure can be slow or fail to converge. One way to reduce noise is to generate more samples for the gradient estimate, but this can be computationally expensive. Instead, we view the noisy gradient as a random variable, and form an inexpensive approximation of the generating procedure for the gradient sample. This approximation has high correlation with the noisy gradient by construction, making it a useful control variate for variance reduction. We demonstrate our approach on a non-conjugate hierarchical model and a Bayesian neural net where our method attained orders of magnitude (20-2, 000×) reduction in gradient variance resulting in faster and more stable optimization.

Original languageEnglish (US)
Pages (from-to)3709-3719
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Reducing reparameterization gradient variance'. Together they form a unique fingerprint.

Cite this