RedMaGiC: Selecting luminous red galaxies from the DES Science Verification data

E. Rozo, E. S. Rykoff, A. Abate, C. Bonnett, M. Crocce, C. Davis, B. Hoyle, B. Leistedt, H. V. Peiris, R. H. Wechsler, T. Abbott, F. B. Abdalla, M. Banerji, A. H. Bauer, A. Benoit-Lévy, G. M. Bernstein, E. Bertin, D. Brooks, E. Buckley-Geer, D. L. BurkeD. Capozzi, A. Carnero Rosell, D. Carollo, M. Carrasco Kind, J. Carretero, F. J. Castander, M. J. Childress, C. E. Cunha, C. B. D'Andrea, T. Davis, D. L. DePoy, S. Desai, H. T. Diehl, J. P. Dietrich, P. Doel, T. F. Eifler, A. E. Evrard, A. Fausti Neto, B. Flaugher, P. Fosalba, J. Frieman, E. Gaztanaga, D. W. Gerdes, K. Glazebrook, D. Gruen, R. A. Gruendl, K. Honscheid, D. J. James, M. Jarvis, A. G. Kim, K. Kuehn, N. Kuropatkin, O. Lahav, C. Lidman, M. Lima, M. A.G. Maia, M. March, P. Martini, P. Melchior, C. J. Miller, R. Miquel, J. J. Mohr, R. C. Nichol, B. Nord, C. R. O'Neill, R. Ogando, A. A. Plazas, A. K. Romer, A. Roodman, M. Sako, E. Sanchez, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E.C. Swanson, J. Thaler, D. Thomas, S. Uddin, V. Vikram, A. R. Walker, W. Wester, Y. Zhang, L. N. da Costa

Research output: Contribution to journalArticle

75 Scopus citations

Abstract

We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10-3 (h-1 Mpc)-3, and a median photo-z bias (zspec - zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.

Original languageEnglish (US)
Pages (from-to)1431-1450
Number of pages20
JournalMonthly Notices of the Royal Astronomical Society
Volume461
Issue number2
DOIs
StatePublished - Sep 11 2016

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Galaxies: general
  • Methods: statistical
  • Techniques: photometric

Fingerprint Dive into the research topics of 'RedMaGiC: Selecting luminous red galaxies from the DES Science Verification data'. Together they form a unique fingerprint.

  • Cite this

    Rozo, E., Rykoff, E. S., Abate, A., Bonnett, C., Crocce, M., Davis, C., Hoyle, B., Leistedt, B., Peiris, H. V., Wechsler, R. H., Abbott, T., Abdalla, F. B., Banerji, M., Bauer, A. H., Benoit-Lévy, A., Bernstein, G. M., Bertin, E., Brooks, D., Buckley-Geer, E., ... da Costa, L. N. (2016). RedMaGiC: Selecting luminous red galaxies from the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 461(2), 1431-1450. https://doi.org/10.1093/mnras/stw1281