TY - JOUR
T1 - Red blood cell dynamics
T2 - From cell deformation to ATP release
AU - Wan, Jiandi
AU - Forsyth, Alison M.
AU - Stone, Howard A.
PY - 2011/10
Y1 - 2011/10
N2 - The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release.
AB - The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release.
UR - http://www.scopus.com/inward/record.url?scp=80053654803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053654803&partnerID=8YFLogxK
U2 - 10.1039/c1ib00044f
DO - 10.1039/c1ib00044f
M3 - Review article
C2 - 21935538
AN - SCOPUS:80053654803
SN - 1757-9694
VL - 3
SP - 972
EP - 981
JO - Integrative Biology (United Kingdom)
JF - Integrative Biology (United Kingdom)
IS - 10
ER -