Abstract
Motivation: DNA sequencing of multiple samples from the same tumor provides data to analyze the process of clonal evolution in the population of cells that give rise to a tumor. Results: We formalize the problem of reconstructing the clonal evolution of a tumor using single-nucleotide mutations as the variant allele frequency (VAF) factorization problem. We derive a combinatorial characterization of the solutions to this problem and show that the problem is NP-complete. We derive an integer linear programming solution to the VAF factorization problem in the case of error-free data and extend this solution to real data with a probabilistic model for errors. The resulting AncesTree algorithm is better able to identify ancestral relationships between individual mutations than existing approaches, particularly in ultra-deep sequencing data when high read counts for mutations yield high confidence VAFs.
Original language | English (US) |
---|---|
Pages (from-to) | i62-i70 |
Journal | Bioinformatics |
Volume | 31 |
Issue number | 12 |
DOIs | |
State | Published - Jun 15 2015 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Computational Mathematics
- Molecular Biology
- Biochemistry
- Statistics and Probability
- Computer Science Applications
- Computational Theory and Mathematics