TY - JOUR
T1 - Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig
AU - PCAWG Evolution and Heterogeneity Working Group
AU - PCAWG Consortium
AU - Rubanova, Yulia
AU - Shi, Ruian
AU - Harrigan, Caitlin F.
AU - Li, Roujia
AU - Wintersinger, Jeff
AU - Sahin, Nil
AU - Deshwar, Amit G.
AU - Dentro, Stefan C.
AU - Leshchiner, Ignaty
AU - Gerstung, Moritz
AU - Jolly, Clemency
AU - Haase, Kerstin
AU - Tarabichi, Maxime
AU - Wintersinger, Jeff
AU - Deshwar, Amit G.
AU - Yu, Kaixian
AU - Gonzalez, Santiago
AU - Rubanova, Yulia
AU - Macintyre, Geoff
AU - Adams, David J.
AU - Anur, Pavana
AU - Beroukhim, Rameen
AU - Boutros, Paul C.
AU - Bowtell, David D.
AU - Campbell, Peter J.
AU - Cao, Shaolong
AU - Christie, Elizabeth L.
AU - Cmero, Marek
AU - Cun, Yupeng
AU - Dawson, Kevin J.
AU - Demeulemeester, Jonas
AU - Donmez, Nilgun
AU - Drews, Ruben M.
AU - Eils, Roland
AU - Fan, Yu
AU - Fittall, Matthew
AU - Garsed, Dale W.
AU - Getz, Gad
AU - Ha, Gavin
AU - Imielinski, Marcin
AU - Jerman, Lara
AU - Ji, Yuan
AU - Kleinheinz, Kortine
AU - Lee, Juhee
AU - Lee-Six, Henry
AU - Livitz, Dimitri G.
AU - Malikic, Salem
AU - Markowetz, Florian
AU - Martincorena, Inigo
AU - Raphael, Benjamin J.
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - The type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3–5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes.
AB - The type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3–5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes.
UR - http://www.scopus.com/inward/record.url?scp=85079071600&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079071600&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-14352-7
DO - 10.1038/s41467-020-14352-7
M3 - Article
C2 - 32024834
AN - SCOPUS:85079071600
SN - 2041-1723
VL - 11
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 731
ER -