Abstract
Learning-to-learn or meta-learning leverages data-driven inductive bias to increase the efficiency of learning on a novel task. This approach encounters difficulty when transfer is not advantageous, for instance, when tasks are considerably dissimilar or change over time. We use the connection between gradient-based meta-learning and hierarchical Bayes to propose a Dirichlet process mixture of hierarchical Bayesian models over the parameters of an arbitrary parametric model such as a neural network. In contrast to consolidating inductive biases into a single set of hyperparameters, our approach of task-dependent hyperparameter selection better handles latent distribution shift, as demonstrated on a set of evolving, image-based, few-shot learning benchmarks.
| Original language | English (US) |
|---|---|
| Journal | Advances in Neural Information Processing Systems |
| Volume | 32 |
| State | Published - 2019 |
| Event | 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada Duration: Dec 8 2019 → Dec 14 2019 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing