Re(bpy)(CO)3CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase

Steven Y. Reece, Daniel A. Lutterman, Mohammad R. Seyedsayamdost, Jo Anne Stubbe, Daniel G. Nocera

Research output: Contribution to journalArticle

14 Scopus citations

Abstract

Photochemical ribonucleotide reductases (photoRNRs) have been developed to study the proton-coupled electron transfer (PCET) mechanism of radical transport in Escherichia coli class I ribonucleotide reductase (RNR). The transport of the effective radical occurs along several conserved aromatic residues across two subunits: β2(Y122 → W48 → Y356) → α2(Y731 → Y730 → C439). The current model for RNR activity suggests that radical transport is strongly controlled by conformational gating. The C-terminal tail peptide (Y-βC19) of β2 is the binding determinant of β2 to α2 and contains the redox active Y356 residue. A photoRNR has been generated synthetically by appending a Re(bpy)(CO)3CN ([Re]) photo-oxidant next to Y356 of the 20-mer peptide. Emission from the [Re] center dramatically increases upon peptide binding, serving as a probe for conformational dynamics and the protonation state of Y356. The diffusion coefficient of [Re]-Y-βC19 has been measured (kd1=6.1 ± 10-7 cm-1 s-1), along with the dissociation rate constant for the [Re]-Y-βC19-α2 complex (7000 s-1 koff > 400 s-1). Results from detailed time-resolved emission and absorption spectroscopy reveal biexponential kinetics, suggesting a large degree of conformational flexibility in the [Re]-Y-βC19-α2 complex that engenders partitioning of the N-terminus of the peptide into both bound and solvent-exposed fractions.

Original languageEnglish (US)
Pages (from-to)5832-5838
Number of pages7
JournalBiochemistry
Volume48
Issue number25
DOIs
StatePublished - Jun 30 2009

All Science Journal Classification (ASJC) codes

  • Biochemistry

Fingerprint Dive into the research topics of 'Re(bpy)(CO)<sub>3</sub>CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase'. Together they form a unique fingerprint.

  • Cite this