TY - GEN
T1 - REAL-TIME DESIGN OF ARCHITECTURAL STRUCTURES WITH DIFFERENTIABLE MECHANICS AND NEURAL NETWORKS
AU - Pastrana, Rafael
AU - Medina, Eder
AU - de Oliveira, Isabel M.
AU - Adriaenssens, Sigrid
AU - Adams, Ryan P.
N1 - Publisher Copyright:
© 2025 13th International Conference on Learning Representations, ICLR 2025. All rights reserved.
PY - 2025
Y1 - 2025
N2 - Designing mechanically efficient geometry for architectural structures like shells, towers, and bridges, is an expensive iterative process. Existing techniques for solving such inverse problems rely on traditional optimization methods, which are slow and computationally expensive, limiting iteration speed and design exploration. Neural networks would seem to offer a solution via data-driven amortized optimization, but they often require extensive fine-tuning and cannot ensure that important design criteria, such as mechanical integrity, are met. In this work, we combine neural networks with a differentiable mechanics simulator to develop a model that accelerates the solution of shape approximation problems for architectural structures represented as bar systems. This model explicitly guarantees compliance with mechanical constraints while generating designs that closely match target geometries. We validate our approach in two tasks, the design of masonry shells and cable-net towers. Our model achieves better accuracy and generalization than fully neural alternatives, and comparable accuracy to direct optimization but in real time, enabling fast and reliable design exploration. We further demonstrate its advantages by integrating it into 3D modeling software and fabricating a physical prototype. Our work opens up new opportunities for accelerated mechanical design enhanced by neural networks for the built environment.
AB - Designing mechanically efficient geometry for architectural structures like shells, towers, and bridges, is an expensive iterative process. Existing techniques for solving such inverse problems rely on traditional optimization methods, which are slow and computationally expensive, limiting iteration speed and design exploration. Neural networks would seem to offer a solution via data-driven amortized optimization, but they often require extensive fine-tuning and cannot ensure that important design criteria, such as mechanical integrity, are met. In this work, we combine neural networks with a differentiable mechanics simulator to develop a model that accelerates the solution of shape approximation problems for architectural structures represented as bar systems. This model explicitly guarantees compliance with mechanical constraints while generating designs that closely match target geometries. We validate our approach in two tasks, the design of masonry shells and cable-net towers. Our model achieves better accuracy and generalization than fully neural alternatives, and comparable accuracy to direct optimization but in real time, enabling fast and reliable design exploration. We further demonstrate its advantages by integrating it into 3D modeling software and fabricating a physical prototype. Our work opens up new opportunities for accelerated mechanical design enhanced by neural networks for the built environment.
UR - https://www.scopus.com/pages/publications/105010270818
UR - https://www.scopus.com/inward/citedby.url?scp=105010270818&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:105010270818
T3 - 13th International Conference on Learning Representations, ICLR 2025
SP - 82701
EP - 82724
BT - 13th International Conference on Learning Representations, ICLR 2025
PB - International Conference on Learning Representations, ICLR
T2 - 13th International Conference on Learning Representations, ICLR 2025
Y2 - 24 April 2025 through 28 April 2025
ER -