Rate-Driving Force Relationships in the Multisite Proton-Coupled Electron Transfer Activation of Ketones

Guanqi Qiu, Robert R. Knowles

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Here we present a detailed kinetic study of the multisite proton-coupled electron transfer (MS-PCET) activations of aryl ketones using a variety of Brønsted acids and excited-state Ir(III)-based electron donors. A simple method is described for simultaneously extracting both the hydrogen-bonding equilibrium constants and the rate constants for the PCET event from deconvolution of the luminescence quenching data. These experiments confirm that these activations occur in a concerted fashion, wherein the proton and electron are transferred to the ketone substrate in a single elementary step. The rates constants for the PCET events were linearly correlated with their driving forces over a range of nearly 19 kcal/mol. However, the slope of the rate-driving force relationship deviated significantly from expectations based on Marcus theory. A rationalization for this observation is proposed based on the principle of non-perfect synchronization, wherein factors that serve to stabilize the product are only partially realized at the transition state. A discussion of the relevance of these findings to the applications of MS-PCET in organic synthesis is also presented.

Original languageEnglish (US)
Pages (from-to)2721-2730
Number of pages10
JournalJournal of the American Chemical Society
Issue number6
StatePublished - Feb 13 2019

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry


Dive into the research topics of 'Rate-Driving Force Relationships in the Multisite Proton-Coupled Electron Transfer Activation of Ketones'. Together they form a unique fingerprint.

Cite this