Abstract
We study the spreading of a droplet of surfactant solution on a thin suspended soap film as a function of dynamic surface tension and volume of the droplet. Radial growth of the leading edge (R) shows power-law dependence on time with exponents ranging roughly from 0.1 to 1 for different surface tension differences (Δσ) between the film and the droplet. When the surface tension of the droplet is lower than the surface tension of the film (Δσ > 0), we observe rapid spreading of the droplet with R ≈ tα, where α (0.4 < α < 1) is highly dependent on Δσ. Balance arguments assuming the spreading process is driven by Marangoni stresses versus inertial stresses yield α = 2/3. When the surface tension difference does not favor spreading (Δσ < 0), spreading still occurs but is slow with 0.1 < α < 0.2. This phenomenon could be used for stretching droplets in 2D and modifying thin suspended films.
Original language | English (US) |
---|---|
Journal | Langmuir |
DOIs | |
State | Published - 2019 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Spectroscopy
- General Materials Science
- Surfaces and Interfaces
- Electrochemistry