TY - GEN
T1 - Ranking causal influence of financial markets via directed information graphs
AU - Diamandis, Theo
AU - Murin, Yonathan
AU - Goldsmith, Andrea
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/5/21
Y1 - 2018/5/21
N2 - A non-parametric method for ranking stock indices according to their mutual causal influences is presented. Under the assumption that indices reflect the underlying economy of a country, such a ranking indicates which countries exert the most economic influence in an examined subset of the global economy. The proposed method represents the indices as nodes in a directed graph, where the edges' weights are estimates of the pair-wise causal influences, quantified using the directed information functional. This method facilitates using a relatively small number of samples from each index. The indices are then ranked according to their net-flow in the estimated graph (sum of the incoming weights subtracted from the sum of outgoing weights). Daily and minute-by-minute data from nine indices (three from Asia, three from Europe and three from the US) were analyzed. The analysis of daily data indicates that the US indices are the most influential, which is consistent with intuition that the indices representing larger economies usually exert more influence. Yet, it is also shown that an index representing a small economy can strongly influence an index representing a large economy if the smaller economy is indicative of a larger phenomenon. Finally, it is shown that while inter-region interactions can be captured using daily data, intra-region interactions require more frequent samples.
AB - A non-parametric method for ranking stock indices according to their mutual causal influences is presented. Under the assumption that indices reflect the underlying economy of a country, such a ranking indicates which countries exert the most economic influence in an examined subset of the global economy. The proposed method represents the indices as nodes in a directed graph, where the edges' weights are estimates of the pair-wise causal influences, quantified using the directed information functional. This method facilitates using a relatively small number of samples from each index. The indices are then ranked according to their net-flow in the estimated graph (sum of the incoming weights subtracted from the sum of outgoing weights). Daily and minute-by-minute data from nine indices (three from Asia, three from Europe and three from the US) were analyzed. The analysis of daily data indicates that the US indices are the most influential, which is consistent with intuition that the indices representing larger economies usually exert more influence. Yet, it is also shown that an index representing a small economy can strongly influence an index representing a large economy if the smaller economy is indicative of a larger phenomenon. Finally, it is shown that while inter-region interactions can be captured using daily data, intra-region interactions require more frequent samples.
UR - http://www.scopus.com/inward/record.url?scp=85048533069&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048533069&partnerID=8YFLogxK
U2 - 10.1109/CISS.2018.8362199
DO - 10.1109/CISS.2018.8362199
M3 - Conference contribution
AN - SCOPUS:85048533069
T3 - 2018 52nd Annual Conference on Information Sciences and Systems, CISS 2018
SP - 1
EP - 6
BT - 2018 52nd Annual Conference on Information Sciences and Systems, CISS 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 52nd Annual Conference on Information Sciences and Systems, CISS 2018
Y2 - 21 March 2018 through 23 March 2018
ER -