Range adaptation for 3d object detection in LiDAR

Ze Wang, Sihao DIng, Ying Li, Minming Zhao, Sohini Roychowdhury, Andreas Wallin, Guillermo Sapiro, Qiang Qiu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

28 Scopus citations

Abstract

LiDAR-based 3D object detection plays a crucial role in modern autonomous driving systems. LiDAR data often exhibit severe changes in properties across different observation ranges. In this paper, we explore cross-range adaptation for 3D object detection using LiDAR, i.e., far-range observations are adapted to near-range. This way, far-range detection is optimized for similar performance to near-range one. We adopt a bird-eyes view (BEV) detection framework to perform the proposed model adaptation. Our model adaptation consists of an adversarial global adaptation, and a fine-grained local adaptation. The proposed cross-range adaptation framework is validated on three state-of-the-art LiDAR based object detection networks, and we consistently observe performance improvement on the far-range objects, without adding any auxiliary parameters to the model. To the best of our knowledge, this paper is the first attempt to study cross-range LiDAR adaptation for object detection in point clouds. To demonstrate the generality of the proposed adaptation framework, experiments on more challenging cross-device adaptation are further conducted, and a new LiDAR dataset with high-quality annotated point clouds is released to promote future research.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2320-2328
Number of pages9
ISBN (Electronic)9781728150239
DOIs
StatePublished - Oct 2019
Externally publishedYes
Event17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019 - Seoul, Korea, Republic of
Duration: Oct 27 2019Oct 28 2019

Publication series

NameProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019

Conference

Conference17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period10/27/1910/28/19

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Keywords

  • 3D object detection
  • Autonomous driving
  • Domain adaptation
  • Point cloud

Fingerprint

Dive into the research topics of 'Range adaptation for 3d object detection in LiDAR'. Together they form a unique fingerprint.

Cite this