Random sequential addition of hard spheres in high Euclidean dimensions

S. Torquato, O. U. Uche, F. H. Stillinger

Research output: Contribution to journalArticlepeer-review

141 Scopus citations

Abstract

Sphere packings in high dimensions have been the subject of recent theoretical interest. Employing numerical and theoretical methods, we investigate the structural characteristics of random sequential addition (RSA) of congruent spheres in d -dimensional Euclidean space Rd in the infinite-time or saturation limit for the first six space dimensions (1≤d≤6). Specifically, we determine the saturation density, pair correlation function, cumulative coordination number and the structure factor in each of these dimensions. We find that for 2≤d≤6, the saturation density s scales with dimension as s = c1 2d + c2 d 2d, where c1 =0.202 048 and c2 =0.973 872. We also show analytically that the same density scaling is expected to persist in the high-dimensional limit, albeit with different coefficients. A byproduct of this high-dimensional analysis is a relatively sharp lower bound on the saturation density for any d given by s (d+2)(1- S0) 2d+1, where S0 [0,1] is the structure factor at k=0 (i.e., infinite-wavelength number variance) in the high-dimensional limit. We demonstrate that a Palàsti-type conjecture (the saturation density in Rd is equal to that of the one-dimensional problem raised to the d th power) cannot be true for RSA hyperspheres. We show that the structure factor S(k) must be analytic at k=0 and that RSA packings for 1≤d≤6 are nearly "hyperuniform." Consistent with the recent "decorrelation principle," we find that pair correlations markedly diminish as the space dimension increases up to six. We also obtain kissing (contact) number statistics for saturated RSA configurations on the surface of a d -dimensional sphere for dimensions 2≤d≤5 and compare to the maximal kissing numbers in these dimensions. We determine the structure factor exactly for the related "ghost" RSA packing in Rd and demonstrate that its distance from "hyperuniformity" increases as the space dimension increases, approaching a constant asymptotic value of 1. Our work has implications for the possible existence of disordered classical ground states for some continuous potentials in sufficiently high dimensions.

Original languageEnglish (US)
Article number061308
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume74
Issue number6
DOIs
StatePublished - 2006

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Statistical and Nonlinear Physics
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Random sequential addition of hard spheres in high Euclidean dimensions'. Together they form a unique fingerprint.

Cite this