RAFT: Recurrent All-Pairs Field Transforms for Optical Flow (Extended Abstract)

Zachary Teed, Jia Deng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D correlation volumes for all pairs of pixels, and iteratively updates a flow field through a recurrent unit that performs lookups on the correlation volumes. RAFT achieves state-of-the-art performance on the KITTI and Sintel datasets. In addition, RAFT has strong cross-dataset generalization as well as high efficiency in inference time, training speed, and parameter count.

Original languageEnglish (US)
Title of host publicationProceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
EditorsZhi-Hua Zhou
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4839-4843
Number of pages5
ISBN (Electronic)9780999241196
StatePublished - 2021
Event30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada
Duration: Aug 19 2021Aug 27 2021

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Country/TerritoryCanada
CityVirtual, Online
Period8/19/218/27/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'RAFT: Recurrent All-Pairs Field Transforms for Optical Flow (Extended Abstract)'. Together they form a unique fingerprint.

Cite this