Abstract
In the latter moments of 2023 July 17, the solar active region (AR) 13363, near the southwestern face of the Sun, was undergoing considerable evolution, which resulted in a significant solar energetic particle (SEP) event measured by Parker Solar Probe’s Integrated Science Investigation of the Sun (ISeIS) and near-Earth spacecraft. Remote observations from GOES and CHASE captured two M5.0+ solar flares that peaked at 23:34 and 00:06 UT from the source region. In tandem, STEREO COR2 first recorded a small, narrow coronal mass ejection (CME) emerging at 22:54 UT and then saw a major halo CME emerge at 23:43 UT with a bright, rapidly expanding core and CME-driven magnetic shock with an estimated speed of ∼1400 km s−1. Parker Solar Probe was positioned at 0.65 au, near-perfectly on the nominal Parker spiral magnetic field line, which connected Earth and the AR for a 537 km s−1 ambient solar wind speed at L1. This fortuitous alignment provided the opportunity to examine how the SEP velocity dispersion, energy spectra, elemental composition, and fluence varied from 0.65 to 1 au along a shared magnetic connection to the Sun. We find a strong radial gradient, which is best characterized for H and He as r−4.0, and most surprisingly, is stronger for O and Fe, which is better described by r−5.7
Original language | English (US) |
---|---|
Article number | 8 |
Journal | Astrophysical Journal |
Volume | 981 |
Issue number | 1 |
DOIs | |
State | Published - Mar 1 2025 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science