TY - JOUR
T1 - Quorum-sensing control of matrix protein production drives fractal wrinkling and interfacial localization of Vibrio cholerae pellicles
AU - Qin, Boyang
AU - Bassler, Bonnie L.
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Bacterial cells at fluid interfaces can self-assemble into collective communities with stunning macroscopic morphologies. Within these soft, living materials, called pellicles, constituent cells gain group-level survival advantages including increased antibiotic resistance. However, the regulatory and structural components that drive pellicle self-patterning are not well defined. Here, using Vibrio cholerae as our model system, we report that two sets of matrix proteins and a key quorum-sensing regulator jointly orchestrate the sequential mechanical instabilities underlying pellicle morphogenesis, culminating in fractal patterning. A pair of matrix proteins, RbmC and Bap1, maintain pellicle localization at the interface and prevent self-peeling. A single matrix protein, RbmA, drives a morphogenesis program marked by a cascade of ever finer wrinkles with fractal scaling in wavelength. Artificial expression of rbmA restores fractal wrinkling to a ΔrbmA mutant and enables precise tuning of fractal dimensions. The quorum-sensing regulatory small RNAs Qrr1-4 first activate matrix synthesis to launch pellicle primary wrinkling and ridge instabilities. Subsequently, via a distinct mechanism, Qrr1-4 suppress fractal wrinkling to promote fine modulation of pellicle morphology. Our results connect cell-cell signaling and architectural components to morphogenic patterning and suggest that manipulation of quorum-sensing regulators or synthetic control of rbmA expression could underpin strategies to engineer soft biomaterial morphologies on demand.
AB - Bacterial cells at fluid interfaces can self-assemble into collective communities with stunning macroscopic morphologies. Within these soft, living materials, called pellicles, constituent cells gain group-level survival advantages including increased antibiotic resistance. However, the regulatory and structural components that drive pellicle self-patterning are not well defined. Here, using Vibrio cholerae as our model system, we report that two sets of matrix proteins and a key quorum-sensing regulator jointly orchestrate the sequential mechanical instabilities underlying pellicle morphogenesis, culminating in fractal patterning. A pair of matrix proteins, RbmC and Bap1, maintain pellicle localization at the interface and prevent self-peeling. A single matrix protein, RbmA, drives a morphogenesis program marked by a cascade of ever finer wrinkles with fractal scaling in wavelength. Artificial expression of rbmA restores fractal wrinkling to a ΔrbmA mutant and enables precise tuning of fractal dimensions. The quorum-sensing regulatory small RNAs Qrr1-4 first activate matrix synthesis to launch pellicle primary wrinkling and ridge instabilities. Subsequently, via a distinct mechanism, Qrr1-4 suppress fractal wrinkling to promote fine modulation of pellicle morphology. Our results connect cell-cell signaling and architectural components to morphogenic patterning and suggest that manipulation of quorum-sensing regulators or synthetic control of rbmA expression could underpin strategies to engineer soft biomaterial morphologies on demand.
UR - http://www.scopus.com/inward/record.url?scp=85139821539&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139821539&partnerID=8YFLogxK
U2 - 10.1038/s41467-022-33816-6
DO - 10.1038/s41467-022-33816-6
M3 - Article
C2 - 36229546
AN - SCOPUS:85139821539
SN - 2041-1723
VL - 13
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 6063
ER -