Abstract
The secretion of small Fe-binding molecules called siderophores is an important microbial strategy for survival in Fe-limited environments. Siderophore production is often regulated by quorum sensing (QS), a microbial counting technique that allows organisms to alter gene expression based on cell density. However, the identity and quantities of siderophores produced under QS regulation are rarely studied in the context of their roles in Fe uptake. We investigated the link between QS, siderophores, and Fe uptake in the model marine organism Vibrio harveyi where QS is thought to repress siderophore production. We find that V. harveyi uses a single QS- and Fe-repressed gene cluster to produce both cell-associated siderophores (amphiphilic enterobactins) as well as several related soluble siderophores, which we identify and quantify using liquid chromatography-coupled (LC)-MS as well as tandem high-resolution MS (LC-HR-MS/MS). Measurements of siderophore production show that soluble siderophores are present at ∼100× higher concentrations than amphi-enterobactin and that over the course of growth V. harveyi decreases amphi-enterobactin concentrations but accumulates soluble siderophores.55Fe radio-tracer uptake experiments demonstrate that these soluble siderophores play a significant role in Fe uptake and that the QS-dictated concentrations of soluble siderophores in stationary phase are near the limit of cellular uptake capacities. We propose that cell-associated and soluble siderophores are beneficial to V. harveyi in different environmental and growth contexts and that QS allows V. harveyi to exploit “knowledge” of its population size to avoid unnecessary siderophore production.
Original language | English (US) |
---|---|
Pages (from-to) | 7581-7586 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 115 |
Issue number | 29 |
DOIs | |
State | Published - Jul 17 2018 |
All Science Journal Classification (ASJC) codes
- General
Keywords
- High-resolution mass
- Iron
- Quorum sensing
- Siderophores
- Spectrometry
- Vibrio harveyi