Abstract
We calculate the zero-temperature (T=0) phase diagram of a polarized two-component Fermi gas in an array of weakly coupled parallel one-dimensional (1D) "tubes" produced by a two-dimensional optical lattice. Increasing the lattice strength drives a crossover from three-dimensional (3D) to 1D behavior, stabilizing the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) modulated superfluid phase. We argue that the most promising regime for observing the FFLO phase is in the quasi-1D regime, where the atomic motion is largely 1D but there is weak tunneling in the other directions that stabilizes long-range order. In the FFLO phase, we describe a phase transition where the quasiparticle spectrum changes from gapless near the 3D regime to gapped in quasi-1D.
Original language | English (US) |
---|---|
Article number | 250403 |
Journal | Physical review letters |
Volume | 99 |
Issue number | 25 |
DOIs | |
State | Published - Dec 18 2007 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy