Abstract
Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: Ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model.We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.
Original language | English (US) |
---|---|
Pages (from-to) | 379-382 |
Number of pages | 4 |
Journal | Science |
Volume | 363 |
Issue number | 6425 |
DOIs | |
State | Published - Jan 25 2019 |
All Science Journal Classification (ASJC) codes
- General