TY - GEN
T1 - Quantum lightning never strikes the same state twice
AU - Zhandry, Mark
N1 - Publisher Copyright:
© International Association for Cryptologic Research 2019.
PY - 2019
Y1 - 2019
N2 - Public key quantum money can be seen as a version of the quantum no-cloning theorem that holds even when the quantum states can be verified by the adversary. In this work, we investigate quantum lightning where no-cloning holds even when the adversary herself generates the quantum state to be cloned. We then study quantum money and quantum lightning, showing the following results: We demonstrate the usefulness of quantum lightning beyond quantum money by showing several potential applications, such as generating random strings with a proof of entropy, to completely decentralized cryptocurrency without a block-chain, where transactions is instant and local.We give Either/Or results for quantum money/lightning, showing that either signatures/hash functions/commitment schemes meet very strong recently proposed notions of security, or they yield quantum money or lightning. Given the difficulty in constructing public key quantum money, this suggests that natural schemes do attain strong security guarantees.We show that instantiating the quantum money scheme of Aaronson and Christiano [STOC’12] with indistinguishability obfuscation that is secure against quantum computers yields a secure quantum money scheme. This construction can be seen as an instance of our Either/Or result for signatures, giving the first separation between two security notions for signatures from the literature.Finally, we give a plausible construction for quantum lightning, which we prove secure under an assumption related to the multi-collision resistance of degree-2 hash functions. Our construction is inspired by our Either/Or result for hash functions, and yields the first plausible standard model instantiation of a non-collapsing collision resistant hash function. This improves on a result of Unruh [Eurocrypt’16] which is relative to a quantum oracle.
AB - Public key quantum money can be seen as a version of the quantum no-cloning theorem that holds even when the quantum states can be verified by the adversary. In this work, we investigate quantum lightning where no-cloning holds even when the adversary herself generates the quantum state to be cloned. We then study quantum money and quantum lightning, showing the following results: We demonstrate the usefulness of quantum lightning beyond quantum money by showing several potential applications, such as generating random strings with a proof of entropy, to completely decentralized cryptocurrency without a block-chain, where transactions is instant and local.We give Either/Or results for quantum money/lightning, showing that either signatures/hash functions/commitment schemes meet very strong recently proposed notions of security, or they yield quantum money or lightning. Given the difficulty in constructing public key quantum money, this suggests that natural schemes do attain strong security guarantees.We show that instantiating the quantum money scheme of Aaronson and Christiano [STOC’12] with indistinguishability obfuscation that is secure against quantum computers yields a secure quantum money scheme. This construction can be seen as an instance of our Either/Or result for signatures, giving the first separation between two security notions for signatures from the literature.Finally, we give a plausible construction for quantum lightning, which we prove secure under an assumption related to the multi-collision resistance of degree-2 hash functions. Our construction is inspired by our Either/Or result for hash functions, and yields the first plausible standard model instantiation of a non-collapsing collision resistant hash function. This improves on a result of Unruh [Eurocrypt’16] which is relative to a quantum oracle.
UR - http://www.scopus.com/inward/record.url?scp=85065917663&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065917663&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-17659-4_14
DO - 10.1007/978-3-030-17659-4_14
M3 - Conference contribution
AN - SCOPUS:85065917663
SN - 9783030176587
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 408
EP - 438
BT - Advances in Cryptology – EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
A2 - Ishai, Yuval
A2 - Rijmen, Vincent
PB - Springer Verlag
T2 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Eurocrypt 2019
Y2 - 19 May 2019 through 23 May 2019
ER -