Abstract
The attractive Fermi-Hubbard model is the simplest theoretical model for studying pairing and superconductivity of fermions on a lattice. It exhibits many interesting features including a short-coherence length at intermediate coupling and a pseudogap regime with anomalous properties. Here we study an experimental realization of this model using a two-dimensional (2D) atomic Fermi gas in an optical lattice. Using a new technique for selective imaging of doublons with a quantum gas microscope, we observe chequerboard doublon density correlations in the normal state close to half-filling. With the aid of quantum Monte Carlo simulations, we show that the measured doublon density correlations allow us to put a lower bound on the strength of s-wave pairing correlations in our system. We compare the temperature sensitivity of the doublon density correlations and the paired atom fraction and find the correlations to be a much better thermometer. Accurate thermometry of attractive lattice systems will be essential in the quest for optimizing cooling schemes to reach superfluid phases in future experiments.
Original language | English (US) |
---|---|
Pages (from-to) | 173-177 |
Number of pages | 5 |
Journal | Nature Physics |
Volume | 14 |
Issue number | 2 |
DOIs | |
State | Published - Feb 1 2018 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy