Quantifying the effect of a mask on expiratory flows

Philippe Bourrianne, Nan Xue, Janine Nunes, Manouk Abkarian, Howard A. Stone

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Face masks are used widely to mitigate the spread of infectious diseases. While their main purpose is to filter pathogenic droplets, masks also represent a porous barrier to exhaled and inhaled air flow. In this study, we characterize the aerodynamic effect of the presence of a mask by tracking the air exhaled by a person through a mask, using both infrared imaging and particle image velocimetry performed on illuminated fog droplets surrounding a subject. We show how a mask confines the exhaled flows within tens of centimeters in front of a person breathing or speaking. In addition, we show that the tissue of common surgical face masks has a low permeability, which efficiently transforms the jetlike flows of exhalation produced during breathing or speaking into quasivertical buoyancy-driven flows. Therefore, wearing a mask offers a strong mitigation of direct transport of infectious material in addition to providing a filtering function. By comparing results on human subjects and model experiments, we propose a model to rationalize how a mask changes the air flow, and thus we provide quantitative insights that are useful for descriptions of disease transmission.

Original languageEnglish (US)
Article number110511
JournalPhysical Review Fluids
Volume6
Issue number11
DOIs
StatePublished - Nov 2021

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Modeling and Simulation
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Quantifying the effect of a mask on expiratory flows'. Together they form a unique fingerprint.

Cite this