Abstract
We propose a quadrupolar exchange-only spin qubit that is highly robust against charge noise and nuclear spin dephasing, the dominant decoherence mechanisms in quantum dots. The qubit consists of four electrons trapped in three quantum dots, and operates in a decoherence-free subspace to mitigate dephasing due to nuclear spins. To reduce sensitivity to charge noise, the qubit can be completely operated at an extended charge noise sweet spot that is first-order insensitive to electrical fluctuations. Because of on-site exchange mediated by the Coulomb interaction, the qubit energy splitting is electrically controllable and can amount to several GHz even in the "off" configuration, making it compatible with conventional microwave cavities.
Original language | English (US) |
---|---|
Article number | 177701 |
Journal | Physical review letters |
Volume | 121 |
Issue number | 17 |
DOIs | |
State | Published - Oct 25 2018 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Quadrupolar Exchange-Only Spin Qubit'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical review letters, Vol. 121, No. 17, 177701, 25.10.2018.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Quadrupolar Exchange-Only Spin Qubit
AU - Russ, Maximilian
AU - Petta, J. R.
AU - Burkard, Guido
N1 - Funding Information: In summary, we have proposed a quadrupolar exchange spin qubit that uses the spin of four electrons in a TQD and gives rise to a large controllable qubit splitting. The decoherence-free ( S = 0 ) qubit encoding makes the qubit insensitive to local magnetic field gradients primarily from nuclear spins and Meissner expulsion. Further, the large energy gap and flat qubit dispersion suppresses the susceptibility to charge noise and the qubit can be fully operated at a (extended) charge noise sweet spot. We predict dephasing times exceeding ∼ 100 μ s at the sweet spot, one order of magnitude longer than for the conventional exchange-only qubit, allowing for a high quality qubit implementation. A symmetric readout and initialization protocol can be used to perform fast and high-fidelity measurements. Together with the proposed cavity-mediated, long-distance entangling protocol, these properties render the QUEX qubit suitable for implementation in a large-scale quantum information processing architecture. We acknowledge funding from ARO through Grant No. W911NF-15-1-0149 and the DFG through SFB 767. We thank M. Benito and J. M. Taylor for helpful discussions. [1] 1 M. Veldhorst , C. H. Yang , J. C. C. Hwang , W. Huang , J. P. Dehollain , J. T. Muhonen , S. Simmons , A. Laucht , F. E. Hudson , K. M. Itoh , A. Morello , and A. S. Dzurak , Nature (London) 526 , 410 ( 2015 ). NATUAS 0028-0836 10.1038/nature15263 [2] 2 J. Yoneda , K. Takeda , T. Otsuka , T. Nakajima , M. R. Delbecq , G. Allison , T. Honda , T. Kodera , S. Oda , Y. Hoshi , N. Usami , K. M. Itoh , and S. Tarucha , Nat. Nanotechnol. 13 , 102 ( 2018 ). NNAABX 1748-3387 10.1038/s41565-017-0014-x [3] 3 D. M. Zajac , A. J. Sigillito , M. Russ , F. Borjans , J. M. Taylor , G. Burkard , and J. R. Petta , Science 359 , 439 ( 2018 ). SCIEAS 0036-8075 10.1126/science.aao5965 [4] 4 T. F. Watson , S. G. J. Philips , E. Kawakami , D. R. Ward , P. Scarlino , M. Veldhorst , D. E. Savage , M. G. Lagally , M. Friesen , S. N. Coppersmith , M. A. Eriksson , and L. M. K. Vandersypen , Nature (London) 555 , 633 ( 2018 ). NATUAS 0028-0836 10.1038/nature25766 [5] 5 D. Loss and D. P. DiVincenzo , Phys. Rev. A 57 , 120 ( 1998 ). PLRAAN 1050-2947 10.1103/PhysRevA.57.120 [6] 6 R. Hanson , L. P. Kouwenhoven , J. R. Petta , S. Tarucha , and L. M. K. Vandersypen , Rev. Mod. Phys. 79 , 1217 ( 2007 ). RMPHAT 0034-6861 10.1103/RevModPhys.79.1217 [7] 7 C. Kloeffel and D. Loss , Annu. Rev. Condens. Matter Phys. 4 , 51 ( 2013 ). ARCMCX 1947-5454 10.1146/annurev-conmatphys-030212-184248 [8] 8 F. A. Zwanenburg , A. S. Dzurak , A. Morello , M. Y. Simmons , L. C. L. Hollenberg , G. Klimeck , S. Rogge , S. N. Coppersmith , and M. A. Eriksson , Rev. Mod. Phys. 85 , 961 ( 2013 ). RMPHAT 0034-6861 10.1103/RevModPhys.85.961 [9] 9 D. P. DiVincenzo , D. Bacon , J. Kempe , G. Burkard , and K. B. Whaley , Nature (London) 408 , 339 ( 2000 ). NATUAS 0028-0836 10.1038/35042541 [10] 10 E. A. Laird , J. M. Taylor , D. P. DiVincenzo , C. M. Marcus , M. P. Hanson , and A. C. Gossard , Phys. Rev. B 82 , 075403 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.075403 [11] 11 L. Gaudreau , G. Granger , A. Kam , G. C. Aers , S. A. Studenikin , P. Zawadzki , M. Pioro-Ladriere , Z. R. Wasilewski , and A. S. Sachrajda , Nat. Phys. 8 , 54 ( 2012 ). NPAHAX 1745-2473 10.1038/nphys2149 [12] 12 J. Medford , J. Beil , J. M. Taylor , E. I. Rashba , H. Lu , A. C. Gossard , and C. M. Marcus , Phys. Rev. Lett. 111 , 050501 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.050501 [13] 13 J. Medford , J. Beil , J. M. Taylor , S. D. Bartlett , A. C. Doherty , E. I. Rashba , D. P. DiVincenzo , H. Lu , A. C. Gossard , and C. M. Marcus , Nat. Nanotechnol. 8 , 654 ( 2013 ). NNAABX 1748-3387 10.1038/nnano.2013.168 [14] 14 K. Eng , T. D. Ladd , A. Smith , M. G. Borselli , A. A. Kiselev , B. H. Fong , K. S. Holabird , T. M. Hazard , B. Huang , P. W. Deelman , I. Milosavljevic , A. E. Schmitz , R. S. Ross , M. F. Gyure , and A. T. Hunter , Sci. Adv. 1 , e1500214 ( 2015 ). SACDAF 2375-2548 10.1126/sciadv.1500214 [15] 15 A. J. Landig , J. V. Koski , P. Scarlino , U. C. Mendes , A. Blais , C. Reichl , W. Wegscheider , A. Wallraff , K. Ensslin , and T. Ihn , Nature (London) 560 , 179 ( 2018 ). NATUAS 0028-0836 10.1038/s41586-018-0365-y [16] 16 D. Bacon , J. Kempe , D. A. Lidar , and K. B. Whaley , Phys. Rev. Lett. 85 , 1758 ( 2000 ). PRLTAO 0031-9007 10.1103/PhysRevLett.85.1758 [17] 17 J. Kempe , D. Bacon , D. A. Lidar , and K. B. Whaley , Phys. Rev. A 63 , 042307 ( 2001 ). PLRAAN 1050-2947 10.1103/PhysRevA.63.042307 [18] 18 F. K. Malinowski , F. Martins , P. D. Nissen , S. Fallahi , G. C. Gardner , M. J. Manfra , C. M. Marcus , and F. Kuemmeth , Phys. Rev. B 96 , 045443 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.045443 [19] 19 J. M. Taylor , V. Srinivasa , and J. Medford , Phys. Rev. Lett. 111 , 050502 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.050502 [20] 20 J. Fei , J.-T. Hung , T. S. Koh , Y.-P. Shim , S. N. Coppersmith , X. Hu , and M. Friesen , Phys. Rev. B 91 , 205434 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.205434 [21] 21 M. Russ and G. Burkard , Phys. Rev. B 91 , 235411 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.235411 [22] 22 M. Russ , F. Ginzel , and G. Burkard , Phys. Rev. B 94 , 165411 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.165411 [23] 23 Y.-P. Shim and C. Tahan , Phys. Rev. B 93 , 121410 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.121410 [24] 24 M. D. Reed , B. M. Maune , R. W. Andrews , M. G. Borselli , K. Eng , M. P. Jura , A. A. Kiselev , T. D. Ladd , S. T. Merkel , I. Milosavljevic , E. J. Pritchett , M. T. Rakher , R. S. Ross , A. E. Schmitz , A. Smith , J. A. Wright , M. F. Gyure , and A. T. Hunter , Phys. Rev. Lett. 116 , 110402 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.110402 [25] 25 F. Martins , F. K. Malinowski , P. D. Nissen , E. Barnes , S. Fallahi , G. C. Gardner , M. J. Manfra , C. M. Marcus , and F. Kuemmeth , Phys. Rev. Lett. 116 , 116801 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.116801 [26] 26 M. Russ and G. Burkard , J. Phys. Condens. Matter 29 , 393001 ( 2017 ). JCOMEL 0953-8984 10.1088/1361-648X/aa761f [27] 27 A. Imamoglu , D. D. Awschalom , G. Burkard , D. P. DiVincenzo , D. Loss , M. Sherwin , and A. Small , Phys. Rev. Lett. 83 , 4204 ( 1999 ). PRLTAO 0031-9007 10.1103/PhysRevLett.83.4204 [28] 28 A. M. Childs and I. L. Chuang , Phys. Rev. A 63 , 012306 ( 2000 ). PLRAAN 1050-2947 10.1103/PhysRevA.63.012306 [29] 29 L. Childress , A. S. Sørensen , and M. D. Lukin , Phys. Rev. A 69 , 042302 ( 2004 ). PLRAAN 1050-2947 10.1103/PhysRevA.69.042302 [30] 30 G. Burkard and A. Imamoglu , Phys. Rev. B 74 , 041307 ( 2006 ). PRBMDO 1098-0121 10.1103/PhysRevB.74.041307 [31] 31 A. Wallraff , D. I. Schuster , A. Blais , J. M. Gambetta , J. Schreier , L. Frunzio , M. H. Devoret , S. M. Girvin , and R. J. Schoelkopf , Phys. Rev. Lett. 99 , 050501 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.99.050501 [32] 32 P. J. Leek , S. Filipp , P. Maurer , M. Baur , R. Bianchetti , J. M. Fink , M. Göppl , L. Steffen , and A. Wallraff , Phys. Rev. B 79 , 180511 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.79.180511 [33] 33 M. Russ and G. Burkard , Phys. Rev. B 92 , 205412 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.92.205412 [34] 34 V. Srinivasa , J. M. Taylor , and C. Tahan , Phys. Rev. B 94 , 205421 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.205421 [35] 35 J.-T. Hung , J. Fei , M. Friesen , and X. Hu , Phys. Rev. B 90 , 045308 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.90.045308 [36] 36 S. Mehl , Phys. Rev. B 91 , 035430 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.035430 [37] 37 C. G. Péterfalvi and G. Burkard , Phys. Rev. B 96 , 245412 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.245412 [38] 38 A. Sala and J. Danon , Phys. Rev. B 95 , 241303 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.95.241303 [39] 39 G. Poulin-Lamarre , J. Thorgrimson , S. A. Studenikin , G. C. Aers , A. Kam , P. Zawadzki , Z. R. Wasilewski , and A. S. Sachrajda , Phys. Rev. B 91 , 125417 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.125417 [40] 40 Z. Shi , C. B. Simmons , J. R. Prance , J. K. Gamble , T. S. Koh , Y.-P. Shim , X. Hu , D. E. Savage , M. G. Lagally , M. A. Eriksson , M. Friesen , and S. N. Coppersmith , Phys. Rev. Lett. 108 , 140503 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.108.140503 [41] 41 T. S. Koh , J. K. Gamble , M. Friesen , M. A. Eriksson , and S. N. Coppersmith , Phys. Rev. Lett. 109 , 250503 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.109.250503 [42] 42 G. Cao , H.-O. Li , G.-D. Yu , B.-C. Wang , B.-B. Chen , X.-X. Song , M. Xiao , G.-C. Guo , H.-W. Jiang , X. Hu , and G.-P. Guo , Phys. Rev. Lett. 116 , 086801 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.086801 [43] 43 B. Thorgrimsson , D. Kim , Y.-C. Yang , L. W. Smith , C. B. Simmons , D. R. Ward , R. H. Foote , J. Corrigan , D. E. Savage , M. G. Lagally , M. Friesen , S. N. Coppersmith , and M. A. Eriksson , npj Quantum Inf. 3 , 32 ( 2017 ). 2056-6387 10.1038/s41534-017-0034-2 [44] 44 B.-C. Wang , G. Cao , H.-O. Li , M. Xiao , G.-C. Guo , X. Hu , H.-W. Jiang , and G.-P. Guo , Phys. Rev. Applied 8 , 064035 ( 2017 ). PRAHB2 2331-7019 10.1103/PhysRevApplied.8.064035 [45] 45 X. Mi , S. Kohler , and J. R. Petta , Phys. Rev. B Rapid Comm. (to be published). [46] 46 J. J. Viennot , M. R. Delbecq , L. E. Bruhat , M. C. Dartiailh , M. M. Desjardins , M. Baillergeau , A. Cottet , and T. Kontos , C. R. Phys. 17 , 705 ( 2016 ). 10.1016/j.crhy.2016.07.008 [47] 47 X. Mi , J. V. Cady , D. M. Zajac , P. W. Deelman , and J. R. Petta , Science 355 , 156 ( 2016 ). SCIEAS 0036-8075 10.1126/science.aal2469 [48] 48 A. Stockklauser , P. Scarlino , J. V. Koski , S. Gasparinetti , C. K. Andersen , C. Reichl , W. Wegscheider , T. Ihn , K. Ensslin , and A. Wallraff , Phys. Rev. X 7 , 011030 ( 2017 ). PRXHAE 2160-3308 10.1103/PhysRevX.7.011030 [49] 49 X. Mi , M. Benito , S. Putz , D. M. Zajac , J. M. Taylor , G. Burkard , and J. R. Petta , Nature (London) 555 , 599 ( 2018 ). NATUAS 0028-0836 10.1038/nature25769 [50] 50 N. Samkharadze , G. Zheng , N. Kalhor , D. Brousse , A. Sammak , U. C. Mendes , A. Blais , G. Scappucci , and L. M. K. Vandersypen , Science 359 , 1123 ( 2018 ). SCIEAS 0036-8075 10.1126/science.aar4054 [51] 51 C. H. Yang , W. H. Lim , N. S. Lai , A. Rossi , A. Morello , and A. S. Dzurak , Phys. Rev. B 86 , 115319 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.115319 [52] 52 D. M. Zajac , T. M. Hazard , X. Mi , E. Nielsen , and J. R. Petta , Phys. Rev. Applied 6 , 054013 ( 2016 ). PRAHB2 2331-7019 10.1103/PhysRevApplied.6.054013 [53] 53 X. Mi , C. G. Péterfalvi , G. Burkard , and J. R. Petta , Phys. Rev. Lett. 119 , 176803 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.176803 [54] 54 D. A. Lidar , Quantum Information and Computation for Chemistry ( John Wiley & Sons, Inc. , New York, 2014 ), pp. 295–354 . [55] 55 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.121.177701 for a detailed description of the theoretical model, the derivation of the effective Hamiltonian using a molecular orbital study, supporting numerical simulations, and additional information for the cavity-mediated two-qubit interaction, which includes Refs. [56–78]. [56] 56 A. Auerbach , Interacting Electrons and Quantum Magnetism (Graduate Texts in Contemporary Physics) ( Springer-Verlag , Berlin, 1998 ). [57] 57 G. Burkard and J. R. Petta , Phys. Rev. B 94 , 195305 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.195305 [58] 58 D. A. Lidar , I. L. Chuang , and K. B. Whaley , Phys. Rev. Lett. 81 , 2594 ( 1998 ). PRLTAO 0031-9007 10.1103/PhysRevLett.81.2594 [59] 59 G. Burkard , D. Loss , and D. P. DiVincenzo , Phys. Rev. B 59 , 2070 ( 1999 ). PRBMDO 0163-1829 10.1103/PhysRevB.59.2070 [60] 60 A. L. Saraiva , M. J. Calderón , X. Hu , S. Das Sarma , and B. Koiller , Phys. Rev. B 80 , 081305 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.081305 [61] 61 D. Culcer , L. Cywiński , Q. Li , X. Hu , and S. Das Sarma , Phys. Rev. B 80 , 205302 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.205302 [62] 62 X. Hu , Phys. Rev. B 83 , 165322 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.83.165322 [63] 63 A. L. Saraiva , M. J. Calderón , R. B. Capaz , X. Hu , S. Das Sarma , and B. Koiller , Phys. Rev. B 84 , 155320 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.155320 [64] 64 J. K. Gamble , M. Friesen , S. N. Coppersmith , and X. Hu , Phys. Rev. B 86 , 035302 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.035302 [65] 65 Y. Wu and D. Culcer , Phys. Rev. B 86 , 035321 ( 2012 ). PRBMDO 1098-0121 10.1103/PhysRevB.86.035321 [66] 66 N. M. Zimmerman , P. Huang , and D. Culcer , Nano Lett. 17 , 4461 ( 2017 ). NALEFD 1530-6984 10.1021/acs.nanolett.7b01677 [67] 67 M. Friesen , S. Chutia , C. Tahan , and S. N. Coppersmith , Phys. Rev. B 75 , 115318 ( 2007 ). PRBMDO 1098-0121 10.1103/PhysRevB.75.115318 [68] 68 M. Friesen and S. N. Coppersmith , Phys. Rev. B 81 , 115324 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.81.115324 [69] 69 D. Culcer , L. Cywiński , Q. Li , X. Hu , and S. Das Sarma , Phys. Rev. B 82 , 155312 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.155312 [70] 70 D. Culcer , X. Hu , and S. Das Sarma , Phys. Rev. B 82 , 205315 ( 2010 ). PRBMDO 1098-0121 10.1103/PhysRevB.82.205315 [71] 71 C. Tahan and R. Joynt , Phys. Rev. B 89 , 075302 ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.89.075302 [72] 72 M. J. Rančić and G. Burkard , Phys. Rev. B 93 , 205433 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.205433 [73] 73 N. Marzari , A. A. Mostofi , J. R. Yates , I. Souza , and D. Vanderbilt , Rev. Mod. Phys. 84 , 1419 ( 2012 ). RMPHAT 0034-6861 10.1103/RevModPhys.84.1419 [74] 74 E. Barnes , J. P. Kestner , N. T. T. Nguyen , and S. Das Sarma , Phys. Rev. B 84 , 235309 ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.235309 [75] 75 R. N. Annavarapu , Am. J. Comput. Appl. Math. 3 , 33 ( 2013 ). 10.5923/j.ajcam.20130301.06 [76] 76 S. Goswami , K. A. Slinker , M. Friesen , L. M. McGuire , J. L. Truitt , C. Tahan , L. J. Klein , J. O. Chu , P. M. Mooney , D. W. van der Weide , R. Joynt , S. N. Coppersmith , and M. A. Eriksson , Nat. Phys. 3 , 41 ( 2006 ). NPAHAX 1745-2473 10.1038/nphys475 [77] 77 Z. Shi , C. B. Simmons , J. R. Prance , J. K. Gamble , M. Friesen , D. E. Savage , M. G. Lagally , S. N. Coppersmith , and M. A. Eriksson , Appl. Phys. Lett. 99 , 233108 ( 2011 ). APPLAB 0003-6951 10.1063/1.3666232 [78] 78 L. Zhang , J.-W. Luo , A. Saraiva , B. Koiller , and A. Zunger , Nat. Commun. 4 , 2396 ( 2013 ). NCAOBW 2041-1723 10.1038/ncomms3396 [79] 79 J. R. Petta , A. C. Johnson , J. M. Taylor , E. A. Laird , A. Yacoby , M. D. Lukin , C. M. Marcus , M. P. Hanson , and A. C. Gossard , Science 309 , 2180 ( 2005 ). SCIEAS 0036-8075 10.1126/science.1116955 [80] 80 M. Atatüre , J. Dreiser , A. Badolato , A. Högele , K. Karrai , and A. Imamoglu , Science 312 , 551 ( 2006 ). SCIEAS 0036-8075 10.1126/science.1126074 [81] 81 V. Srinivasa , H. Xu , and J. M. Taylor , Phys. Rev. Lett. 114 , 226803 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.114.226803 [82] 82 R. Hanson and G. Burkard , Phys. Rev. Lett. 98 , 050502 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.98.050502 [83] 83 B. Bertrand , H. Flentje , S. Takada , M. Yamamoto , S. Tarucha , A. Ludwig , A. D. Wieck , C. Bäuerle , and T. Meunier , Phys. Rev. Lett. 115 , 096801 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.096801 [84] 84 W. G. van der Wiel , S. De Franceschi , J. M. Elzerman , T. Fujisawa , S. Tarucha , and L. P. Kouwenhoven , Rev. Mod. Phys. 75 , 1 ( 2002 ). RMPHAT 0034-6861 10.1103/RevModPhys.75.1 [85] 85 D. Bacon , arXiv:quant-ph/0305025 . [86] 86 R. Woodworth , A. Mizel , and D. A. Lidar , J. Phys. Condens. Matter 18 , S721 ( 2006 ). JCOMEL 0953-8984 10.1088/0953-8984/18/21/S02 [87] 87 F. Reiter , M. J. Kastoryano , and A. S. Sørensen , New J. Phys. 14 , 053022 ( 2012 ). NJOPFM 1367-2630 10.1088/1367-2630/14/5/053022 [88] 88 J. I. Cirac and P. Zoller , Phys. Rev. Lett. 74 , 4091 ( 1995 ). PRLTAO 0031-9007 10.1103/PhysRevLett.74.4091 [89] 89 N. Samkharadze , A. Bruno , P. Scarlino , G. Zheng , D. P. DiVincenzo , L. DiCarlo , and L. M. K. Vandersypen , Phys. Rev. Applied 5 , 044004 ( 2016 ). PRAHB2 2331-7019 10.1103/PhysRevApplied.5.044004 [90] 90 A. Pal , E. I. Rashba , and B. I. Halperin , Phys. Rev. X 4 , 011012 ( 2014 ). PRXHAE 2160-3308 10.1103/PhysRevX.4.011012 Publisher Copyright: © 2018 American Physical Society.
PY - 2018/10/25
Y1 - 2018/10/25
N2 - We propose a quadrupolar exchange-only spin qubit that is highly robust against charge noise and nuclear spin dephasing, the dominant decoherence mechanisms in quantum dots. The qubit consists of four electrons trapped in three quantum dots, and operates in a decoherence-free subspace to mitigate dephasing due to nuclear spins. To reduce sensitivity to charge noise, the qubit can be completely operated at an extended charge noise sweet spot that is first-order insensitive to electrical fluctuations. Because of on-site exchange mediated by the Coulomb interaction, the qubit energy splitting is electrically controllable and can amount to several GHz even in the "off" configuration, making it compatible with conventional microwave cavities.
AB - We propose a quadrupolar exchange-only spin qubit that is highly robust against charge noise and nuclear spin dephasing, the dominant decoherence mechanisms in quantum dots. The qubit consists of four electrons trapped in three quantum dots, and operates in a decoherence-free subspace to mitigate dephasing due to nuclear spins. To reduce sensitivity to charge noise, the qubit can be completely operated at an extended charge noise sweet spot that is first-order insensitive to electrical fluctuations. Because of on-site exchange mediated by the Coulomb interaction, the qubit energy splitting is electrically controllable and can amount to several GHz even in the "off" configuration, making it compatible with conventional microwave cavities.
UR - http://www.scopus.com/inward/record.url?scp=85055674686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055674686&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.121.177701
DO - 10.1103/PhysRevLett.121.177701
M3 - Article
C2 - 30411952
AN - SCOPUS:85055674686
SN - 0031-9007
VL - 121
JO - Physical Review Letters
JF - Physical Review Letters
IS - 17
M1 - 177701
ER -