Pulsation frequencies and modes of giant exoplanets

Bastien Le Bihan, Adam Burrows

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


We calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency ν0 and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency ν0 which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 MJ ≤ MP ≤ 15 MJ , and fixing the planet radius to the Jovian value, we find that ν0 ∼ 164.0 × (MP /MJ )0.48μHz, where M P is the planet mass and MJ is Jupiter's mass. For the radius range from 0.9 to 2.0 RJ , and fixing the planet's mass to the Jovian value, we find that ν0 ∼ 164.0 × (RP /RJ )-2.09μHz, where RP is the planet radius and RJ is Jupiter's radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.

Original languageEnglish (US)
Article number18
JournalAstrophysical Journal
Issue number1
StatePublished - Feb 10 2013

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


  • methods: numerical
  • planets and satellites: fundamental parameters
  • planets and satellites: general
  • planets and satellites: interiors


Dive into the research topics of 'Pulsation frequencies and modes of giant exoplanets'. Together they form a unique fingerprint.

Cite this