Abstract
We propose a novel setting for reinforcement learning that combines two common real-world difficulties: presence of observations (such as camera images) and factored states (such as location of objects). In our setting, the agent receives observations generated stochastically from a latent factored state. These observations are rich enough to enable decoding of the latent state and remove partial observability concerns. Since the latent state is combinatorial, the size of state space is exponential in the number of latent factors. We create a learning algorithm FactoRL (Fact-o-Rel) for this setting which uses noise-contrastive learning to identify latent structures in emission processes and discover a factorized state space. We derive polynomial sample complexity guarantees for FactoRL which polynomially depend upon the number factors, and very weakly depend on the size of the observation space. We also provide a guarantee of polynomial time complexity when given access to an efficient planning algorithm.
Original language | English (US) |
---|---|
State | Published - 2021 |
Event | 9th International Conference on Learning Representations, ICLR 2021 - Virtual, Online Duration: May 3 2021 → May 7 2021 |
Conference
Conference | 9th International Conference on Learning Representations, ICLR 2021 |
---|---|
City | Virtual, Online |
Period | 5/3/21 → 5/7/21 |
All Science Journal Classification (ASJC) codes
- Language and Linguistics
- Computer Science Applications
- Education
- Linguistics and Language