Abstract
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation, which is subsequently used to learn a good policy in a target task. We propose a new notion of task relatedness between source and target tasks, and develop a novel approach for representational transfer under this assumption. Concretely, we show that given a generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy in the target task. The sample complexity is close to knowing the ground truth features in the target task, and comparable to prior representation learning results in the source tasks. We complement our positive results with lower bounds without generative access, and validate our findings with empirical evaluation on rich observation MDPs that require deep exploration. In our experiments, we observe speed up in learning in the target by pre-training, and also validate the need for generative access in source tasks.
Original language | English (US) |
---|---|
Pages (from-to) | 2114-2187 |
Number of pages | 74 |
Journal | Proceedings of Machine Learning Research |
Volume | 195 |
State | Published - 2023 |
Event | 36th Annual Conference on Learning Theory, COLT 2023 - Bangalore, India Duration: Jul 12 2023 → Jul 15 2023 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability
Keywords
- Low-Rank MDPs
- Reinforcement Learning Theory
- Transfer Learning