Provable algorithms for inference in topic models

Sanjeev Arora, Rong Ge, Frederic Koehler, Tengyu Ma, Ankur Moitra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Recently, there has been considerable progress on designing algorithms with provable guarantees - typically using linear algebraic methods - for parameter learning in latent variable models. But designing provable algorithms for inference has proven to be more challenging. Here we take a first step towards provable inference in topic models. We leverage a property of topic models that enables us to construct simple linear estimators for the unknown topic proportions that have small variance, and consequently can work with short documents. Our estimators also correspond to finding an estimate around which the posterior is well-concentrated. We show lower bounds that for shorter documents it can be information theoretically impossible to find the hidden topics. Finally, we give empirical results that demonstrate that our algorithm works on realistic topic models. It yields good solutions on synthetic data and runs in time comparable to a single iteration of Gibbs sampling.

Original languageEnglish (US)
Title of host publication33rd International Conference on Machine Learning, ICML 2016
EditorsKilian Q. Weinberger, Maria Florina Balcan
PublisherInternational Machine Learning Society (IMLS)
Pages4176-4184
Number of pages9
ISBN (Electronic)9781510829008
StatePublished - 2016
Event33rd International Conference on Machine Learning, ICML 2016 - New York City, United States
Duration: Jun 19 2016Jun 24 2016

Publication series

Name33rd International Conference on Machine Learning, ICML 2016
Volume6

Other

Other33rd International Conference on Machine Learning, ICML 2016
Country/TerritoryUnited States
CityNew York City
Period6/19/166/24/16

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Provable algorithms for inference in topic models'. Together they form a unique fingerprint.

Cite this