Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold

Christopher J. Chang, Leng Leng Chng, Daniel G. Nocera

Research output: Contribution to journalArticlepeer-review

169 Scopus citations

Abstract

Porphyrin architectures bearing a hydrogen-bonding scaffold have been synthesized. The H-bond pendant allows proton-coupled electron transfer (PCET) to be utilized as a vehicle for effecting catalytic O-O bond activation chemistry. Suzuki cross-coupling reactions provide a modular synthetic strategy for the attachment of porphyrins to a rigid xanthene or dibenzofuran pillar bearing the H-bond pendant. The resulting HPX (hanging porphyrin xanthene) and HPD (hanging porphyrin dibenzofuran) systems permit both the orientation and acid-base properties of the hanging H-bonding group to be controlled. Comparative reactivity studies for the catalase-like disproportionation of hydrogen peroxide and the epoxidation of olefins by the HPX and HPD platforms with acid and ester hanging groups reveal that the introduction of a proton-transfer network, properly oriented to a redox-active platform, can orchestrate catalytic O-O bond activation. For the catalase and epoxidation reaction types, a marked reactivity enhancement is observed for the xanthene-bridged platform appended with a pendant carboxylic acid group, establishing that this approach can yield superior catalysts to analogues that do not control both proton and electron inventories.

Original languageEnglish (US)
Pages (from-to)1866-1876
Number of pages11
JournalJournal of the American Chemical Society
Volume125
Issue number7
DOIs
StatePublished - Feb 15 2003
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold'. Together they form a unique fingerprint.

Cite this