TY - JOUR
T1 - Protein mobility in the cytoplasm of Escherichia coli
AU - Elowitz, Michael B.
AU - Surette, Michael G.
AU - Wolf, Pierre Etienne
AU - Stock, Jeffry B.
AU - Leibler, Stanislas
PY - 1999/1
Y1 - 1999/1
N2 - The rate of protein diffusion in bacterial cytoplasm may constrain a variety of cellular functions and limit the rates of many biochemical reactions in vivo. In this paper, we report noninvasive measurements of the apparent diffusion coefficient of green fluorescent protein (GFP) in the cytoplasm of Escherichia coli. These measurements were made in two ways: by photobleaching of GFP fluorescence and by photoactivation of a red-emitting fluorescent state of GFP (M. B. Elowitz, M. G. Surette, P. E. Wolf, J. Stock, and S. Leibler, Curr. Biol. 7:809-812, 1997). The apparent diffusion coefficient, D(a), of GFP in E. coli DH5α was found to be 7.7 ± 2.5 μm2/s. A 72-kDa fusion protein composed of GFP and a cytoplasmically localized maltose binding protein domain moves more slowly, with D(a), of 2.5 ± 0.6 μm2/s. In addition, GFP mobility can depend strongly on at least two factors: first, D(a) is reduced to 3.6 ± 0.7 μm2/s at high levels of GFP expression; second, the addition to GFP of a small tag consisting of six histidine residues reduces D(a) to 4.0 ± 2.0 μm2/s. Thus, a single effective cytoplasmic viscosity cannot explain all values of D(a) reported here. These measurements have implications for the understanding of intracellular biochemical networks.
AB - The rate of protein diffusion in bacterial cytoplasm may constrain a variety of cellular functions and limit the rates of many biochemical reactions in vivo. In this paper, we report noninvasive measurements of the apparent diffusion coefficient of green fluorescent protein (GFP) in the cytoplasm of Escherichia coli. These measurements were made in two ways: by photobleaching of GFP fluorescence and by photoactivation of a red-emitting fluorescent state of GFP (M. B. Elowitz, M. G. Surette, P. E. Wolf, J. Stock, and S. Leibler, Curr. Biol. 7:809-812, 1997). The apparent diffusion coefficient, D(a), of GFP in E. coli DH5α was found to be 7.7 ± 2.5 μm2/s. A 72-kDa fusion protein composed of GFP and a cytoplasmically localized maltose binding protein domain moves more slowly, with D(a), of 2.5 ± 0.6 μm2/s. In addition, GFP mobility can depend strongly on at least two factors: first, D(a) is reduced to 3.6 ± 0.7 μm2/s at high levels of GFP expression; second, the addition to GFP of a small tag consisting of six histidine residues reduces D(a) to 4.0 ± 2.0 μm2/s. Thus, a single effective cytoplasmic viscosity cannot explain all values of D(a) reported here. These measurements have implications for the understanding of intracellular biochemical networks.
UR - http://www.scopus.com/inward/record.url?scp=0032900409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032900409&partnerID=8YFLogxK
U2 - 10.1128/jb.181.1.197-203.1999
DO - 10.1128/jb.181.1.197-203.1999
M3 - Article
C2 - 9864330
AN - SCOPUS:0032900409
SN - 0021-9193
VL - 181
SP - 197
EP - 203
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 1
ER -