TY - JOUR

T1 - Protected boundary states in gapless topological phases

AU - Matsuura, Shunji

AU - Chang, Po Yao

AU - Schnyder, Andreas P.

AU - Ryu, Shinsei

PY - 2013/6

Y1 - 2013/6

N2 - We systematically study gapless topological phases of (semi-)metals and nodal superconductors described by Bloch and Bogoliubov-de Gennes Hamiltonians. Using K-theory, a classification of topologically stable Fermi surfaces in (semi-)metals and nodal lines in superconductors is derived. We discuss a generalized bulk-boundary correspondence that relates the topological features of the Fermi surfaces and superconducting nodal lines to the presence of protected zero-energy states at the boundary of the system. Depending on the case, the boundary states are either linearly dispersing (i.e. Dirac or Majorana states) or dispersionless, forming two-dimensional surface flat bands or one-dimensional arc surface states. We study examples of gapless topological phases in symmetry classes AIII and DIII, focusing in particular on nodal superconductors, such as nodal noncentrosymmetric superconductors. For some cases we explicitly compute the surface spectrum and examine the signatures of the topological boundary states in the surface density of states. We also discuss the robustness of the surface states against disorder.

AB - We systematically study gapless topological phases of (semi-)metals and nodal superconductors described by Bloch and Bogoliubov-de Gennes Hamiltonians. Using K-theory, a classification of topologically stable Fermi surfaces in (semi-)metals and nodal lines in superconductors is derived. We discuss a generalized bulk-boundary correspondence that relates the topological features of the Fermi surfaces and superconducting nodal lines to the presence of protected zero-energy states at the boundary of the system. Depending on the case, the boundary states are either linearly dispersing (i.e. Dirac or Majorana states) or dispersionless, forming two-dimensional surface flat bands or one-dimensional arc surface states. We study examples of gapless topological phases in symmetry classes AIII and DIII, focusing in particular on nodal superconductors, such as nodal noncentrosymmetric superconductors. For some cases we explicitly compute the surface spectrum and examine the signatures of the topological boundary states in the surface density of states. We also discuss the robustness of the surface states against disorder.

UR - http://www.scopus.com/inward/record.url?scp=84879359654&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879359654&partnerID=8YFLogxK

U2 - 10.1088/1367-2630/15/6/065001

DO - 10.1088/1367-2630/15/6/065001

M3 - Article

AN - SCOPUS:84879359654

VL - 15

JO - New Journal of Physics

JF - New Journal of Physics

SN - 1367-2630

M1 - 065001

ER -