Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration

Peter A. Dewey, Daniel B. Quinn, Birgitt M. Boschitsch, Alexander J. Smits

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Experimental and analytical results are presented on two identical bio-inspired hydrofoils oscillating in a side-by-side configuration. The time-averaged thrust production and power input to the fluid are found to depend on both the oscillation phase differential and the transverse spacing between the foils. For in-phase oscillations, the foils exhibit an enhanced propulsive efficiency at the cost of a reduction in thrust. For out-of-phase oscillations, the foils exhibit enhanced thrust with no observable change in the propulsive efficiency. For oscillations at intermediate phase differentials, one of the foils experiences a thrust and efficiency enhancement while the other experiences a reduction in thrust and efficiency. Flow visualizations reveal how the wake interactions lead to the variations in propulsive performance. Vortices shed into the wake from the tandem foils form vortex pairs rather than vortex streets. For in-phase oscillation, the vortex pairs induce a momentum jet that angles towards the centerplane between the foils, while out-of-phase oscillations produce vortex pairs that angle away from the centerplane between the foils

Original languageEnglish (US)
Article number041903
JournalPhysics of Fluids
Volume26
Issue number4
DOIs
StatePublished - Apr 24 2014

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration'. Together they form a unique fingerprint.

Cite this