Propulsion driven by self-oscillation via an electrohydrodynamic instability

Lailai Zhu, Howard A. Stone

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Oscillations of flagella and cilia play an important role in biology, which motivates the idea of functional mimicry as part of bioinspired applications. Nevertheless, it still remains challenging to drive their artificial counterparts to oscillate via a steady, homogeneous stimulus. Combining theory and simulations, we demonstrate a strategy to achieve this goal by using an elastoelectrohydrodynamic instability (based on the Quincke rotation instability). In particular, we show that applying a uniform dc electric field can produce self-oscillatory motion of a microrobot composed of a dielectric particle and an elastic filament. Upon tuning the electric field and filament elasticity, the microrobot exhibits three distinct behaviors: a stationary state, undulatory swimming, and steady spinning, where the swimming behavior stems from an instability emerging through a Hopf bifurcation. Our results imply the feasibility of engineering self-oscillations by leveraging the elastoviscous response to control the type of bifurcation and the form of instability. We anticipate that our strategy will be useful in a broad range of applications imitating self-oscillatory natural phenomena and biological processes.

Original languageEnglish (US)
Article number061701
JournalPhysical Review Fluids
Volume4
Issue number6
DOIs
StatePublished - Jun 24 2019

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Modeling and Simulation
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Propulsion driven by self-oscillation via an electrohydrodynamic instability'. Together they form a unique fingerprint.

Cite this