Properties of simulated galaxies and supermassive black holes in cosmic voids

Mélanie Habouzit, Alice Pisani, Andy Goulding, Yohan Dubois, Rachel S. Somerville, Jenny E. Greene

Research output: Contribution to journalArticle

Abstract

Cosmic voids, the underdense regions of the cosmic web, are widely used to constrain cosmology. Voids contain few, isolated galaxies, presumably expected to be less evolved and preserving memory of the pristine Universe. We use the cosmological hydrodynamical simulation Horizon-AGN coupled to the void finder VIDE to investigate properties of galaxies in voids at z = 0. We find that, closer to void centres, low-mass galaxies are more common than their massive counterparts. At a fixed dark matter halo mass, they have smaller stellar masses than in denser regions. The star formation rate of void galaxies diminishes when approaching void centres, but their specific star formation rate slightly increases, suggesting that void galaxies form stars more efficiently with respect to their stellar mass. We find that this cannot only be attributed to the prevalence of low-mass galaxies. The inner region of voids also predominantly hosts low-mass black holes (BHs). However, the BH mass-to-galaxy mass ratios resemble those of the whole simulation at z = 0. Our results suggest that even if the growth channels in cosmic voids are different from those in denser environments, voids grow their galaxies and BHs in a similar way. While a large fraction of the BHs have low Eddington ratios, we find that ∼20 per cent could be observed as active galactic nuclei with log10 L2-10 keV = 41.5-42.5 ergs-1. These results pave the way to future work with larger next-generation hydro-simulations, aiming to confirm our findings and prepare the application on data from upcoming large surveys such as Prime Focus Spectrograph, Euclid, and Wide Field Infrared Survey Telescope.

Original languageEnglish (US)
Pages (from-to)899-921
Number of pages23
JournalMonthly Notices of the Royal Astronomical Society
Volume493
Issue number1
DOIs
StatePublished - Mar 1 2020

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Black hole physics
  • Galaxies: evolution
  • Galaxies: formation
  • Method: numerical

Fingerprint Dive into the research topics of 'Properties of simulated galaxies and supermassive black holes in cosmic voids'. Together they form a unique fingerprint.

  • Cite this