Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at sub-wavelength scales

Xue Wu, Huaixi Lu, Kaushik Sengupta

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

The ability to sense terahertz waves in a chip-scale technology operable at room temperature has potential for transformative applications in chemical sensing, biomedical imaging, spectroscopy and security. However, terahertz sensors are typically limited in their responsivity to a narrow slice of the incident field properties including frequency, angle of incidence and polarization. Sensor fusions across these field properties can revolutionize THz sensing allowing robustness, versatility and real-time imaging. Here, we present an approach that incorporates frequency, pattern and polarization programmability into a miniaturized chip-scale THz sensor. Through direct programming of a continuous electromagnetic interface at deep subwavelength scales, we demonstrate the ability to program the sensor across the spectrum (0.1–1.0 THz), angle of incidence and polarization simultaneously in a single chip implemented in an industry standard 65-nm CMOS process. The methodology is compatible with other technology substrates that can allow extension of such programmability into other spectral regions.

Original languageEnglish (US)
Article number2722
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at sub-wavelength scales'. Together they form a unique fingerprint.

  • Cite this