Abstract
The ability to sense terahertz waves in a chip-scale technology operable at room temperature has potential for transformative applications in chemical sensing, biomedical imaging, spectroscopy and security. However, terahertz sensors are typically limited in their responsivity to a narrow slice of the incident field properties including frequency, angle of incidence and polarization. Sensor fusions across these field properties can revolutionize THz sensing allowing robustness, versatility and real-time imaging. Here, we present an approach that incorporates frequency, pattern and polarization programmability into a miniaturized chip-scale THz sensor. Through direct programming of a continuous electromagnetic interface at deep subwavelength scales, we demonstrate the ability to program the sensor across the spectrum (0.1–1.0 THz), angle of incidence and polarization simultaneously in a single chip implemented in an industry standard 65-nm CMOS process. The methodology is compatible with other technology substrates that can allow extension of such programmability into other spectral regions.
Original language | English (US) |
---|---|
Article number | 2722 |
Journal | Nature communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Biochemistry, Genetics and Molecular Biology
- General Physics and Astronomy