TY - JOUR

T1 - Probing the geometry of the Laughlin state

AU - Johri, Sonika

AU - Papic, Z.

AU - Schmitteckert, P.

AU - Bhatt, R. N.

AU - Haldane, F. D.M.

N1 - Publisher Copyright:
© 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2016/2/5

Y1 - 2016/2/5

N2 - It has recently been pointed out that phases of matter with intrinsic topological order, like the fractional quantum Hall states, have an extra dynamical degree of freedom that corresponds to quantum geometry. Here we perform extensive numerical studies of the geometric degree of freedom for the simplest example of fractional quantum Hall states - the filling Laughlin state. We perturb the system by a smooth, spatially dependent metric deformation and measure the response of the Hall fluid, finding it to be proportional to the Gaussian curvature of the metric. Further, we generalize the concept of coherent states to formulate the bulk off-diagonal long range order for the Laughlin state, and compute the deformations of the metric in the vicinity of the edge of the system. We introduce a 'pair amplitude' operator and show that it can be used to numerically determine the intrinsic metric of the Laughlin state. These various probes are applied to several experimentally relevant settings that can expose the quantum geometry of the Laughlin state, in particular to systems with mass anisotropy and in the presence of an electric field gradient.

AB - It has recently been pointed out that phases of matter with intrinsic topological order, like the fractional quantum Hall states, have an extra dynamical degree of freedom that corresponds to quantum geometry. Here we perform extensive numerical studies of the geometric degree of freedom for the simplest example of fractional quantum Hall states - the filling Laughlin state. We perturb the system by a smooth, spatially dependent metric deformation and measure the response of the Hall fluid, finding it to be proportional to the Gaussian curvature of the metric. Further, we generalize the concept of coherent states to formulate the bulk off-diagonal long range order for the Laughlin state, and compute the deformations of the metric in the vicinity of the edge of the system. We introduce a 'pair amplitude' operator and show that it can be used to numerically determine the intrinsic metric of the Laughlin state. These various probes are applied to several experimentally relevant settings that can expose the quantum geometry of the Laughlin state, in particular to systems with mass anisotropy and in the presence of an electric field gradient.

UR - http://www.scopus.com/inward/record.url?scp=84960157141&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84960157141&partnerID=8YFLogxK

U2 - 10.1088/1367-2630/18/2/025011

DO - 10.1088/1367-2630/18/2/025011

M3 - Article

AN - SCOPUS:84960157141

VL - 18

JO - New Journal of Physics

JF - New Journal of Physics

SN - 1367-2630

IS - 2

M1 - 025011

ER -