Probing Light by Matter: Implications of Complex Illumination on Ultrafast Nanostructuring

Camilo Florian, Xiaohan Du, Craig B. Arnold

Research output: Chapter in Book/Report/Conference proceedingChapter


Pushing the limits of precision and reproducibility in ultrafast laser-based nanostructuring requires detailed control over the properties of the illumination. Most traditional methods of laser-based manufacturing rely on the simplicity of Gaussian beams for their well-understood propagation behavior and ease of generation. However, a variety of benefits can be obtained by moving beyond Gaussian beams to single or multiple tailored beams working toward optimal spatial and temporal control over the beam profiles. In this chapter, we center our attention on methods to generate and manipulate complex light beams and the resulting material interactions that occur in response to irradiations with these non-traditional sources. We begin with a discussion on the main differences between Gaussian and more complex light profiles, describing the mechanisms of phase and spatial control before narrowing the discussion to approaches for spatial structuring associated with materials processing with ultrashort laser pulses. Such structuring can occur in both far-field propagating architectures, considering rapidly varying spatial profiles generated mechanically or optically, as well as near-field, non-propagating beams associated with plasmonic and dielectric systems. This chapter emphasizes some of the unique abilities of complex light to shape materials at the nanoscale from a fundamental perspective while referencing potential applications of such methods.

Original languageEnglish (US)
Title of host publicationSpringer Series in Optical Sciences
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages33
StatePublished - 2023

Publication series

NameSpringer Series in Optical Sciences
ISSN (Print)0342-4111
ISSN (Electronic)1556-1534

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials


  • Airy beams
  • Annular beams
  • Bessel beams
  • Dielectric microlenses
  • Direct laser-interference patterning
  • Dual-laser additive manufacturing
  • Dual-laser beam processing
  • Gaussian beam
  • Laser-induced forward transfer
  • Plasmonic focusing
  • Resonant focal scanning
  • TAG lens
  • Time-dependent structured profiles
  • Top-hat
  • Vortex beams


Dive into the research topics of 'Probing Light by Matter: Implications of Complex Illumination on Ultrafast Nanostructuring'. Together they form a unique fingerprint.

Cite this